Dealing with uncertainty in decision models

Susan Griffin Centre for Health Economics, University of York

Economic evaluation in health care

- Decision problem
 - Which interventions to provide given resource constraints?
- Assess health gains and costs associated with alternative interventions
 - Utilise available evidence
 - Attribute differences to use of particular interventions
 - Reimburse set of interventions that maximises net health benefit

Cost-effectiveness plane

Uncertainty

- Stemming from incomplete knowledge
 - Which sources of evidence are relevant
 - Relationship between inputs
 - True/population values
- Reducible through further research
- Resolvable over time

Cost-effectiveness plane

Sources of uncertainty

- Which sources of evidence
 - Internal validity, external validity, bias
 - Missing observations and outcomes
 - Sample size
- Relationship between inputs
- Value judgements

Relevant evidence for treatment effects

- Causal effects of interventions
- Internal validity
 - Impossible to directly observe health gains with intervention and health gains without
 - Ability to approximate counterfactual
 - E.g. RCT versus observational study
- External validity
 - Extent to which results in studied population hold true for target population
 - E.g. trial setting versus general practice

Relevant evidence for treatment effects

- Lack of validity indicates bias
 - Systematic difference between estimate and true value
 - Bias is source of uncertainty
- Missing observations
 - If not missing completely at random, complete case analysis will be biased

Cost-effectiveness plane

Dealing with bias

- Eliminate or minimise
 - E.g. rely on RCTs for treatment effect if suitable
 - Adjust for selection bias in analysis
 - E.g. regression model, propensity score, IV, selection model
 - Utilise imputation for missing observations
 - E.g. multiple imputation
- Characterise as additional parameter
 - E.g. elicitation, informative prior

Relationships between inputs

- Several studies reporting same information
 - Meta-analysis
 - Generalised evidence synthesis
- Missing outcomes
 - Required for CEA, not measured directly
 - Expected survival: extrapolation
 - HRQL: cross-walks/mapping
- Decision model
 - Explicit framework
 - Assumptions, logical relationship between inputs

Structural uncertainty

- Modelling or structural uncertainty
 - Alternative model structures or assumptions could generate different results
- Model validity
 - Assess how accurately available info characterised
 - Typically no source for external validation
 - Value judgements
 - Can identify some models as invalid, but may not identify single best structure

Sampling uncertainty

- Inputs informed by sample data
 - Underlying population values estimated with uncertainty
 - Evidence supports a range of plausible values with varying degrees of likelihood
- Direct data unavailable
 - Cannot omit important variable from analysis
 - Elicitation

Dealing with uncertainty

- Describe range of
 - True values of inputs
 - Possible relationships between inputs
 - Value judgements
 - Describe outputs from alternative values deterministic sensitivity analysis
- Also describe likelihood of particular values
 - Probabilistic sensitivity analysis for parameters
 - Bayesian model averaging

Probabilistic sensitivity analysis

- Produces distribution of model outputs
 - Best estimates of mean costs and health outcomes nonlinear model
- Estimate decision uncertainty
 - How likely is the decision to be in error?
 - What are the consequences of that error?
 - Attributable to uncertainty characterised for parameters

Why uncertainty?

- Non-linear model
- Value of evidence
 - Is current evidence sufficient?
 - Is further research valuable?
- Consequences of uncertain decision
 - New evidence emerge suggesting change in decision
 - Resource implications: Investment/reversal
- Dependence between reimbursement and research
 - Value of information forgone
 - OIR, coverage with evidence development

Is evidence sufficient?

- Additional evidence expected to reduce decision uncertainty
 - Reduce probability of error
 - Reduce opportunity cost of uncertainty
- Compare expected improvement in health gains
 with reduced uncertainty to cost of research
 - Perfect information: EVPI, EVPPI
 - Imperfect information: EVSI, ENBS

Impact of uncertainty

- Investment cost
 - Sunk costs, irrecoverable if decision changed
 - Gains from new technology must be sufficient to outweigh investment cost
- Reversal cost
 - Incurred only when decision revised
- Characterising uncertainty helps estimate likelihood of change
 - Additional info on when new evidence could emerge

Interaction between research and reimbursement

- Some research not possible once technology in widespread use
 - Approval removes option to collect further evidence
 - Value of information forgone
 - Compare to opportunity cost of delaying access (OIR)
- Some research easier after approval (AWR)
- Reimbursement decision conditional on uncertainty
 E.g. Patient access schemes, risk sharing

Summary

- Uncertainty inherent to resource allocation decisions
 - Regardless of whether based on formal or informal analysis
- Characterisation of uncertainty essential to inform reimbursement decisions
 - Appropriate response to uncertainty required to achieve best possible health outcomes
 - Even for decision maker with remit for reimbursement not research